에너지용어 어려우시죠? 궁금한 에너지용어가 있으신가요?
에너지용어가 알고싶다면 이제 이곳에서 검색해보세요. 쉽고 간단하게 알 수 있습니다.
나프타에서 잔사유에 이르는 각종 탄화수소를 촉매를 첨가하여 고온, 고압하에 수소기류 속에서 분해하여 수소화하고, 보다 경질인 탄화수소로 전환시키는 것. LPG, 휘발류, 등유, 제트연료, 경유 등의 제품을 얻을 수 있고 게다가 그 품질도 좋아 후처리 등이 불필요하다.
VDU에서 생산된 VGO(감압경유)를 촉매가 채워진 고온·고압의 반응기에서 수소와 반응시켜 분해하는 시설로 생산제품은 LPG, 납사, 등유, 경유이며 경유가 주 제품임. Hydrocracker는 FCC와는 달리 촉매가 고정상(Fixed Bed)으로 반응기에 채워져 있어 일정기간이 지나면 오염된 촉매를 재생시키기 위해 가동을 중지시켜야 하며, 다량의 수소를 사용할 뿐만아니라 촉매의 오염문제 때문에 B-C를 직접 처리못하고 VGO만 처리가 가능함. 그러나 Hydrocracker에서 생산된 제품은 분해반응과 동시에 탈황반응이 이루어진 초저유황 제품이며, 불포화 탄화수소도 거의 포함되지 않아 제품의 안정도도 매우 높음. Hydrocracker는 VGO를 처리하므로 원료를 만드는 VDU가 필수 시설이며 VDU에서 VGO와 동시에 생산되는 감압잔사유를 처리하기 위해 보통 VRHDS나 Coker를 같이 건설한다.
촉매를 이용하지 않고 고온으로 탄화수소분자를 분해하는 방법으로 생산되는 제품이 Olefin(불포화 탄화수소)을 많이 함유하여 안정성이 떨어짐. CC, Delayed Coker, Visbreaker등이 대표적인 열분해 시설임.
액체 또는 탄산수소가스를 열 또는 열-촉매 분해하여 생성된 가스연료.
고옥탄 가솔린 제조공정. 비등점 315-560℃의 가스오일을 원료로 사용하여 제올라이트 촉매상에서 반응시켜 가솔린을 얻는다. 최근에는 금속성분에 강인한 촉매들이 개발되어 잔사유를 원료로 사용하는 공정이 상업화 되었다. 이 공정에서 사용되는 반응기는 유동상(Fluidized Bed)반응기로서 고체촉매를 사용하는 기체반응에 사용되는 특수한 형태의 반응기이다. 따라서 접촉분해공정을 유동접촉분해(Fluidized Catalytic Cracking : FCC)라고 부른다.
유동하는 고온의 촉매를 사용하여 중질유를 분해하는 시설로, 원료로는 보통 VGO를 사용하여 흔히 VGO FCC라고도 함. 이 시설은 휘발유생산을 주 목적으로 하는 시설로 생산되는 주요제품은 고옥탄가의 휘발유 및 LPG유분, 경유유분 등임. FCC의 초기 기술로는 촉매문제로 인해 연료유를 직접 투입하지 못하고 감압경유를 투입하여 분해하였으나, 현재는 촉매기술 및 FCC에 대한 기술이 많이 발달하여 연료유를 직접 분해할 수 있는 RFCU가 널리 보급되고 있음.
상압증류공정으로부터 생산되는 나프타 중에는 주로 노말 파라핀이나 측쇄가 적은 파라핀과 나프텐 성분이 포함되어 있기 때문에 이들을 방향족이나 측쇄가 많은 탄화수소로 변환하면 옥탄가가 높은 휘발류를 얻을 수 이렇게 탄화수소의 구조를 바꾸어 옥탄가를 높이는 것을 접촉개질공정이라 한다. 접촉개질공정에서는 촉매독의 원인이되는 황분과 금속(특히 비소)을 제거하기 위해 연료유(나프타)를 나프타 수소화 탈황장치에 의해 전처리하여 반응기로 보낸다. 반응이 완결된 반응생성물은 냉각되어 가스분리조에서 액체와 가스로 분리되며 분리된가스는 수소를 주성분으로하는 가스로서 공정자체에 사용후 잉여가스는 나프타 수소화 탈황장치 등 수소사용공정으로 공급하거나 연료로 사용하는 경우도 있다. 한편 분리조에서 분리된 액상반응생성물은 수소, 메탄, 에탄, 프로판, 부탄 등의 경질 탄화수소유분을 안정탑 상부로부터 분리하여 경질가스와 LPG연료를 부산물로 생산하고 안정탑 하부로부터는 증기압이 조정된 제품(개질휘발유)을 추출한다. 촉매재생방식에서는 촉매를 유동상태에서 사용하는데 사용중인 촉매의 일부를 독립된 재생탑에서 연속재생시켜 반응기로 순환시킬 경우 촉매의 활성을 양호한 상태로 유지시킬 수 있기 때문에 옥탄가가 높은 개질 휘발유를 생산할 수 있다.
CDU에서 생산되는 납사(Naphtha)는 화학적 성질상 휘발유 유분에 속하나 옥탄가가 낮아(RON 60-70) 휘발류로 사용하지 못함. 따라서 탄소수가 6개인 중질납사(HSRN : Heavy Straight Run Naphtha)를 귀금속 촉매를 사용하여 고온, 고압 (약 450-530℃, 약 7-35기압)에서 개질시킴으로써(포화 탄화수소를 방향족 탄화수소 중심의 불포화 탄화수소로 개질) 옥탄가가 높은 (RON94-104) Reformate를 생산하여 휘발유 Blending에 사용함. Reformer에서 생산되는 제품을 Reformate라 하며 주요 성분이 방향족 탄화수소 이므로 여기에서 방향족 화합물인 B.T.X.(Benzene, Toluene, Xylene)을 추출하기도 함. 즉, Reformate는 휘발류 Blending 또는 B.T.X.생산에 사용됨. Reformer에서는 부산물로 LPG와 수소가 다량 발생함.
고옥탄 가솔린 제조공정. 비등점 315-560℃의 가스오일을 원료로 사용하여 제올라이트 촉매상에서 반응시켜 가솔린을 얻는다. 최근에는 금속성분에 강인한 촉매들이 개발되어 잔사유를 원료로 사용하는 공정이 상업화되었다. 이 공정에서 사용되는 반응기는 유동상(Fluidized Bed)반응기로서 고체 촉매를 사용하는 기체 반응에 사용되는 특수한 형태의 반응기이다. 따라서 접촉분해공정을 유동접촉분해(Fluidized Catalytic Cracking : FCC) 라고 부른다.
B-C(상압잔사유)나 Vacuum Residue(감압잔사유)를 반응기에 투입한 후 고온·고압으로 열분해시키는 시설로 주 생산품은 LPG, 납사, 경유 및 고체 Coke임. 촉매나 수소없이 열분을 시키므로 분해율이 낮을 뿐만아니라 생산된 제품들도 불포화 탄화수소가 대부분이어서 별도의 수소처리공정을 거쳐야 완전한 제품으로 사용할 수 있으며, Coke는 고체성분으로 석탄처럼 연료로 사용하거나, 탄소전극을 만드는데 사용함. 열분해 반응에서 생산되는 다량의 고체 Coke는 반응기에서 제거할 때 상당한 시간이 필요하므로 보통두개의 반응기를 설치하여 교대로 운전하며, 국내에는 현대정유의 19,000BPSD 규모의 Delayed Coker가 유일함.